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J. Phys. A: Math. Gen. 16 (1983) 3703-3722.  Printed in Great Britain 

Indecomposable representations of the Lorentz algebra in 
an angular momentum basis 

Bruno Gruber and Romuald Lenczewski:’ 
Physics Department, Southern Illinois University, Carbondale, Illinois 62901, USA 

Received 5 April 1983 

Abstract. Indecomposable (i.e. reducible but not completely reducible) representations 
of the (complex) algebra so (3 ,  1) of the Lorentz group are analysed. A master representa- 
tion of s o ( 3 ,  1) is obtained on the space of its universal enveloping algebra 0. The basis 
chosen for s o ( 3 , l )  is the ‘angular momentum’ basis, and for a ‘natural basis’ with 
respect to the angular momentum basis of s o ( 3 ,  1). The master representation induces 
representations on a space 0~ which is obtained from 0 as quotient space modulo certain 
ideals. These representations have the property that p ( h , )  is diagonal. A change of basis 
is made from the natural basis to the angular momentum basis and the representations 
on n- are analysed in this new basis. The indecomposable (as well as the irreducible) 
representations which are obtained have the property that their so(3) content consists of 
infinile-dimensional indecomposable and irreducible so(3) representations. Certain of the 
indecomposable so(3, 1) representations have additional invariant subspaces which lead 
to quotient spaces which are of finite dimension. These quotient spaces then carry the 
familiar finite-dimensional representations of the Lorentz algebra. It is shown that the 
standard theory of representations of the Lorentz algebra is contained in this analysis as 
a special case of representations which are induced on certain quotient spaces of the space 
n+. 

1. Introduction 

In a previous article (Gruber 1982) we investigated indecomposable representations 
of the complexification D2 of the algebra so(3, 1) of the Lorentz group. This was 
done on the space of the universal enveloping algebra R of the semisimple Lie algebra 
D2. The basis which was chosen for the space was a natural basis. That is, the basis 
elements of R were chosen as the set of ordered tensor products of the basis elements 
of the algebra D2. Once the basis for D2 has been specified, different natural bases 
will differ only in the ordering which is chosen for the basis elements of R . 

The choice of a natural basis simplifies, in general, the analysis. However, the 
natural basis may not be the one which is of significance for different physical problems. 
While the natural basis has, for example, physical significance in problems which 
involve spin-quasispin (Judd 1968, Thomas and Gruber 1980) (seniority and particle 
number) as it does in the various shell models (atomic, nuclear), the natural basis may 
not be very suitable for other physical applications. 

Apart from natural bases which have mathematical and some physical significance, 
the most important bases encountered in physical applications are probably angular 
momentum bases. These are bases of R which have the property that under restriction 
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of so(3, 1 )  to its (angular momentum) subgroup so(3) the basis elements of R transform 
like states of angular momentum representations. The set of basis elements of R 
separates into subsets of bases of so(3) representations which are infinite dimensional, 
irreducible or indecomposable. The finite-dimensional irreducible representations of 
so(3) are, in turn, realised on quotient spaces of certain of the indecomposable 
representations with respect to so(3) invariant subspaces. The analysis given in this 
article thus differs from the analysis given by Gel’fand and Ponomarev (1968) whose 
analysis is carried out on spaces which have the property that they contain, under 
restriction to the so(3) subgroup, only finite-dimensional (irreducible) representations 
of so(3) (with finite multiplicity). 

In this article we start out in S; 3 with deriving a master representation for the 
complex Lorentz algebra so(3 , l )  on the space of its universal enveloping algebra 
(Humphreys 1972, Dixmier 1978). The basis chosen for so(3, 1) is an angular momen- 
tum basis, i.e. under restriction to so(3) one obtains the familiar angular momentum 
algebra. The basis chosen for 0 is a natural basis. In this article we first choose the 
particular ordering as given by p - h - p + h + p 3 h 3 .  The master representation turns out 
to be indecomposable. Certain of its invariant subspaces are identified. 

In S; 4 we discuss a certain class of representations of the Lorentz algebra so(3, 1). 
This class of representations is defined by the conditions 

p (h3)B = A1 I. 
p (h+) l=  p (p+)I = 0. 

p(p3)n= M, 141, A2 E @, 

We discuss in this section representations which are induced by the master representa- 
tion on a space R- which is equivalent to the space R modulo the left ideals which 
are defined by the conditions given above. While this is still done in a natural basis 
for R and 0- we switch now to an angular momentum basis for 0-. This is achieved 
through a determination of the p(h+)  extrema1 vectors of R-. One then obtains the 
relations (4.18). These relations can involve singular coefficients, depending on the 
value of the (complex) parameter A l .  However, even if the parameter A I  is such that 
a ‘singular band’ of coefficients occurs, the relations nevertheless lead to so(3, 1 )  
representations. In the case of a singular band these representations are subduced 
on invariant subspaces or induced on quotient spaces with the singular band lying 
outside of the representation space. 

In cases A and B the relations (4.18) are discussed for specific values of the 
parameters A I ,  A2. The particular choice made for these parameters in cases A and 
B is motivated by our interest in analysing indecomposable representations of so(3, 1) .  
All infinite-dimensional representations (indecomposable or irreducible) which are 
obtained on invariant subspaces or on quotient spaces of 0- have an S O ( 3 )  content 
which consists of infinite-dimensional (indecomposable or irreducible) so(3) rep- 
resentations. Several types of indecomposable so(3, 1) representations are obtained 
for either case A or B. It turns out that if the so(3) content of an (infinite-dimensional) 
indecomposable so(3, 1) representation consists of (infinite-dimensional) indecompos - 
able so(3) representation then the so(3, 1)  representation itself has an additional 
invariant subspace. The quotient space with respect to this invariant subspace is finite 
dimensional and one obtains the familiar finite-dimensional representations of the 
Lorentz algebra (Gelfand et a1 1963, Naimark 1964) as a special case of the analysis 
given in this article. Figures 3 and 4 serve as a kind of graphical summary of cases 
A and B. 
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In S; 5 a basis for 0 is used where the ordering is chosen to be p+h+p-h-p3h3. This 
leads to representations on the space 0,. It is shown that the representations on 0- 
and 0, are related through a Lie algebra automorphism. The representations p' on 
R, are of interest since they contain, in a direct manner, the standard theory of 
irreducible (finite- and infinite-dimensional) representations of the Lorentz algebra 
as a special case. 

2. Notation and definitions 

The angular momentum basis for the (complex) Lie algebra DZ is given by the basis 
elements 

D2: {h3, h+, h- ,  p 3 ,  p + ,  p - 1  

[h3, h*I = *h*, 

[h3, P*I = * p * ,  

(2 .1)  

with the following Lie products 

[ p 3 ,  p*l= r h * ,  

b 3 ,  h*I = *p* ,  
(2.2) 

[h+, P-I=  [Pi, h-1= 2p3 ,  

[A+,  h-]=[p- ,p+]=2h3.  

[ P + ,  h+I  = [ P - ,  h-I = [ P 3 ,  h3I = 0 ,  

The usual restriction of the complex parameters then yields the real non-compact 

In the subsequent sections the following relations will be used: 

[h3, p T l =  *mp,", 

[ p 3 ,  pZ1= r m h + p T - ' ,  

Lie algebra so(3, 1). 

[h3,  h,"] = *mh,", 

[ p 3 ,  hZ1 = *mp,hY ' ,  

[hT,  TI = r2mh,"- 'h3 - m ( m  - I I ~ T - ' ,  
[A,, pT] = ~ 2 m p T - '  p3+m(m - l )h ,pT- ' ,  
[p~ ,p*]=*2mp;1- 'h3+m(m m -1)pT-', 

[ p * ,  h,"]=*2mh,"-'p3-m(m - 1 ) p , h F 2 .  

The relations (2.3) are valid only if all upper signs or all lower signs are taken 
simultaneously. 

The symbols N, N', N-, Z stand for the non-negative integers, the positive integers, 
the negative integers and the set of all integers respectively. The symbols R and C 
represent the sets of real and complex numbers. 

Indecomposable means that a representation is reducible, but not completely 
reducible. 

3. The master representation in the natural basis 

In this section the master representation p is given. This representation is defined on 
the space of the universal enveloping algebra R of so(3, 1). The basis chosen for R 
is called the natural basis and is defined by the set 

n: { ~ ( u ,  m , s , n ,  r,r)=pUhmp:h:plh;, u ,m,s ,  n,  t , r ~ N }  (3.1) 
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where the product is the ordered tensor product and X ( 0 ,  0, 0, 0, 0,O) = 11 denotes the 
identity operator. All representations which will be discussed in this article are 
obtained from this master representation. This includes infinite-dimensional indecom- 
posable representations of various types, infinite-dimensional irreducible representa- 
tions as well as finite-dimensional irreducible representations of so(3, 1 ) .  

Acting with the elements of the algebra so(3, 1 )  upon the basis elements by means 
of the tensor product, and re-expressing the resultant element in terms of the basis 
elements by making use of relations (2.31, one obtains for the master representation 
P :  

p(h3)X = X ( u ,  m,  s ,  n, t, r + 1 )  + (n  i s  - m - u ) X ( u ,  m,  s ,  n, t,  r ) ,  

p (p3 )X  = X ( u ,  m,  s, n, t + 1 ,  r ) + n X ( u ,  m,  s + 1 ,  n - 1 ,  t,  r )  

-sX(u,m,s-l,n+l,t,r)-mX(u+l,m-l,s,n,t,r) 

+ u X ( u  - 1, m + 1 ,  s, n, r, r ) ,  

p ( h - ) X  = X ( u ,  m + 1 ,  s ,  n,  t,  r ) ,  

p(h+)X=X(u,m,s,n+l,t,r)+2mX(u,m-l,s,n,f,r+l) 
p ( p - ) X  = X ( u  + 1 ,  m, s, n,  t,  r ) ,  

+2uX(~-l,m,s,n,t+l,r)+2unX(u - 1 , m , s + l , n  - l , t , r )  

+u(~-l)X(u-2,m+1,s,n,t,r)-2~sX(~-l,m,s-1,n+1,t,r) 

+m(2s + 2 n  - 2u - m + l ) X ( u ,  m - 1 ,  s ,  n, t,  r ) ,  

p ( p , ) X = X ( u ,  m , s + l ,  n, t , r )+2mX(u ,  m - l , s , n , r + l , r )  

-2uX(u  - 1 ,  m, s, n, t ,  r + l ) + 2 m n X ( u ,  m - 1, s +1,  n - 1, t ,  r )  

-m(m - 1 ) X ( u  +1,  m -2 , s ,  n ,  t ,  r ) -2msX(u ,  m - 1 , s - 1 , n  +1 ,  t , r )  

+u(2m -2n - 2 s  + U  - 1 ) X ( u  - 1, m,  s, n, t, r ) .  (3.2) 

The master representation p, equation (3.2), is indecomposable in t as well as in 
r. Moreover, it is indecomposable in the sum s + n = N, N E N. This folio% from the 
fact that the values for t and r do not decrease in (3.2), and neither does the sum 
s +a .  For given values N ,  T, R E N the subset of basis elements 

V ( N , T , R ) : { X ( u , m , s , n , T + r , R + r ) , u , m , s , n , t , r ~ N , s + n ~ N }  (3.3) 

transforms invariantly. We denote by V ( N ,  T, R )  the subspace of fl which is the 
linear span of the basis elements given by (3.3). Note that V(O,O, 0) = R. The 
subspaces V ( N ,  T, R )  thus transform invariantly under the action of the master 
representation p and p thus subduces (indecomposable) representations on these 
subspaces. Moreover, p induces representations on the quotient spaces a/ V ( N ,  T, R) .  
The induced representations are obtained from (3.2) by formally setting equal to zero 
all basis elements 

X ( u ,  m,  s, N - s  + n, T + t ,  R + r )  + 0 ,  for U ,  m ,  s, n, t,  r E N, 

while the subduced representations are obtained through restriction of the representa- 
tions p, equation (3.21, to the basis elements (3.3). 
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4. Representations on 0- in the angular momentum basis 

In this section representations are analysed which are induced by the master rep- 
resentation p,  equation (3.2), for s + n = N = 0, subject to the conditions 

p (h3) 1 = A I  1, p(y3)l= 1421, hi, 112 E C. (4.1) 

R-: { X ( u ,  m ) = p ? h h ,  U, m EN}. (4.2) 

The natural basis for the representation space R- can be chosen as 

The representation which is induced by the master representation p is obtained as 

p(h3)X(u ,  m )  = 011 - m  - u ) X ( u ,  m ) ,  

p(p3)X(u,m)=hzX(u,m)-mX(u+1,m-1)+uX(u-1,m+1), 

p ( h - ) X ( u ,  m )  = X ( u ,  m + 11, P ( P - ) X ( U ,  m )  = X ( u  + 1 ,  m ) ,  

p (h  + ) X ( u ,  m ) = m (2A1 - 2u - m + l ) X ( u ,  m - 1) 

+ 2u h 2 X  ( u - 1, m ) + u (U - l ) X  (u  - 2 ,  m + l), 

~ ( p + ) X ( u , m ) = u ( - 2 h ~ + 2 m + u  - l ) X ( u - l , m )  

(4.3) 

+ 2mA2X(u ,  m - 1) - m ( m  - 1)X(u  + 1, m -2) .  

These equations show that the basis X ( u ,  m )  is not an angular momentum basis. 
It is therefore necessary to carry out a change of basis from the natural basis X ( u ,  m )  
to an angular momentum basis. The angular momentum basis is obtained by requiring 
that 

where 
p ( h + ) Y N  = o ,  (4.4) 

and p ( h 3 ) y ~  = (A1 - N ) Y N .  The new basis 

0- : { y  : = h Y y  N, m, N E N} (4.6) 
is the desired angular momentum basis for a-. That is, it holds in this basis that 

These equations are equivalent to the familiar angular momentum representations. 
The following redefinition of basis elements 
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In (4.8) and (4.9) we have to place a restriction on the generally complex number 
A l .  Namely, Al is to be a real integer or half integer number, and moreover, A1 - N 3 0. 
The restriction of A1 to these values yields the familiar irreducible finite-dimensional 
representations of so(3). In  the following we will not limit our considerations to these 
special representations of so(3), but also consider indecomposable representations of 
so(3). Thus A1 may be any complex number in what follows. This then requires that 
we use the form of the angular momentum representations given by (4.7) as in these 
equations A l  can be an arbitrary complex number. 

Before we discuss the p ( h + )  extremal vectors y N  it may be of advantage to illustrate 
the methods employed by means of the following discussion. This discussion will also 
lead to a special class of so(3, 1 )  representations (irreducible as well as indecomposable 
ones). 

For N = 0, 1 , 2  one obtains the p ( h + )  extremal vectors y o ,  y 1  and y 2  as 

y o = t  y i  =X(1,O)-(A2/~11)X(O, 11, 

y2=X(2, 0)-[2A2/(Al-l)W(l,  l ) - (2A1- l ) -1[ l -2A: / (A1- l ) ]X(0 ,  2). (4.10) 

The spaces associated with the so(3) bases 

{ y  0" = h "1o1, {Y;t=h:Yl}, {yT=hhy2}, m E N ,  (4.11) 

carry so(3) representations, given by (4.7). These representations are infinite 
dimensional and may be irreducible or indecomposable. If they are indecomposable, 
then (4.7) induces finite-dimensional irreducible so(3) representations on the quotient 
spaces. 

Next one needs to calculate the action of the remaining operators of so(3,l). One 
obtains 

P (pdy 0" = h / A d ( A l -  m ) Y  0" - my T-', 
p ( p + ) y 0 "  = m(A2/A1)(2A1 - m  + 1 ) y r - l  - m ( m  - 1 ) ~ 7 - ~ ,  
~ ( p - 1 ~ :  = ( A z l A i ) y 7 "  + ~ 7 ,  

Inspecting (4.3) one sees that in general the action of p ( p )  upon a basis element 
y :  yields a linear combination of the form d1YN-1 + d ~ y ~  +d3yN+1. From this observa- 
tion it follows that if all the dl  are zero (for y:) with N fixed and m arbitrary, then 
the set of basis vectors 

(4.13) 

forms the basis for an invariant subspace. The representation then subduces a 
subrepresentation on this subspace. For the quotient space with respect to the invariant 

{ y  E+s, s, m E NI 
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subspace a basis can be chosen as 

{y 7 ,  i = 0, 1, . , , , N - 1 ; m E N}. (4.14) 

The representation induces a representation on this quotient space. In (4.12) the dl 
become all zero for A: + A $  = 0. We obtain then on the quotient space a representation 
(by formally setting equal to zero all basis elements in (4.12) except the yo") which is 
given by the relations 

p(h3)yo" = (A1 - m)yo", p ( h + ) y o "  = m(2A1 - m  + l)y0"-', 
(4.15) 

p(p3)yo" = i(A1 - m h o " ,  p ( p + ) y 0 "  = im(2A1 - m  + l)y0"-l, 
with hZ = iAl and basis {y;, m EN}, This representation has the following properties: 

(1) It is given in the angular momentum basis. 
(2) ip(h)  = p ( p )  holds. Thus it follows that all so(3) representations can be made 

so(3, 1) representations in this manner. We refer to Gruber and Klimyk (1984) for 
the so(3) representations. 

p ( h - ) y  0" = y0"+', 

p ( p - 1 ~ 0 "  = iy0"+', 

( 3 )  The representation is indecomposable for values A1 such that 

m EN(+. A l - z ( m - l ) = l ,  -1 

The subset {y$'lti+" , n E N} transforms irreducibly and the representation (4.15) 
subduces infinite-dimensional irreducible representations which are bounded above. 
p ( h + ) ~ ~ . ' I + ~  = 0 and p (p+)yo  = 0 holds. The subduced representations are 
obtained from (4.15) through restriction to the invariant subset 

2.4,+1 

n EN, 21+1+n m =21+1+n ,  A1 = I, z " = y o  , 
(4.16) 

P(h3)Z" = -(I + 1 +n)zn ,  p(h+)z"  =-n(21+ l+n)z" - ' ,  p(h - )z "  = z " + l ,  

and ip(h) = p ( p ) .  

the subset) a basis can be chosen as 
For the quotient space with respect to the invariant subspace (the linear span of 

{yo", m = 0, 1 , 2 , .  . . ,2121 = 21). 

The representation which is induced on this quotient space is obtained as (setting 
equal to zero all basis elements yK except yo", m = 0,1 ,2 ,  . . . ,21) 

p(h4yo"  = ( I - m ) y F ,  p ( h + ) y r  = m ( 2 1 - m  +l)yo"- ' ,  

P(h-)Yo" = YOmtl,  m = 0 ,  1 , 2 , .  . . ,21, 

p (p )= ip (h ) .  
(Note, y:'+' is an element of the invariant subspace, thus y:'+l -, 0.) 

These are the finite-dimensional irreducible representations of so(3, 1) of 
dimension 21 + 1. The change of basis equation (4.8) brings these into the familiar form. 

(4) For all values A1 # im, m E N, the representation is infinite dimensional, 
irreducible and bounded above. The only extrema1 vector is U, i.e. p(h+) l=p (p+)U=  0. 

(5) Replacing i by -i in (4.15) takes care of the case h2 = -iAl. 
Having discussed the special class of so(3, 1) representations which can be obtained 

from (irreducible as well as indecomposable) so(3) representations by 'substitution' 
we discuss now the general case of so(3, 1) representations in the angular momentum 
basis. 
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In order to obtain the formulae for the general case of so(3, 1) representations 
in the angular momentum basis it is necessary to study the properties of the p(h+)  
extremal vectors y N ,  equation 14.5). It can be observed that the coefficients ck of an 
extremal vector y N  satisfy the following recurrence relations, 

C I  = (AzN/-Aiko for k = 1 ,  
(4.17) 

( N  - k  + 1)(N - k  + 2 )  
2kA1 -k ( -2N  + k  + 1 )  

2A2(N - k + 1 )  fork  3 2 ,  
c k - 2 +  - 2 k A 1 + k ( - 2 N + k + 1 ) C k - 1  

c k  = 

where co is an undetermined constant. We set c o =  1. Making use of the relations 
(4.17) to determine the first few extremal vectors y N  i t  can be shown, by induction, 
that the master representation p, equation (3.2), induces the following relations on 
R- with respect to the angular momentum basis: 

(4.18) 

CYN =[.4:+(.21+ l - N ) ' ] N [ 2 ( A i +  l ) - N ] / ( . I i +  1 -N) ' [2(A1-N)+3][2(A1 - N ) +  13, 

PN = A ~ ( i l l +  l)/('\i - N ) ( J l ,  + 1 - N ) ,  

241, A2 E d=, N,  m E N. 

In equations (4.18), ,I1 and 122 represent arbitrary complex numbers. It must be 
noted, however, that for certain values of '41 the coefficients CYN and P N  may become 
singular. Equations (4.18) may nevertheless define representations, either on invariant 
subspaces or on quotient spaces, or on both. What happens depends on the order in 
which the limits are taken in the coefficients CYN and PN.  In the following we discuss 
(4.18) for special values of the parameters A I  and A2. 

Case A: 

A1 = $M, ~2 = *;in, M,  n odd integers. 

The denominator of CYN becomes zero for N = $(M + l), $(M + 3). The numerator 
of aN  becomes zero for N = 0, N = M + 2 and N = *in + + 1. The numerator of 
P N  becomes zero for n = O .  The coefficients CYN can become undetermined and the 
existence of finite limits needs to be investigated. The vanishing of signifies an 
invariant subspace. In the following we consider four subcases. 

( A l )  A I = $ ,  A2 = *$ (i.e. M = n = 1) .  

For this case a. = a3 = 0. The value of the coefficients a 1 and a Z  depends on the order 
in which N and the limits of A, and Az are taken. If we characterise the order by 
writing the symbols in parentheses, with the understanding that the sequence is from 
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right to left, then we obtain 
ff1 f f 2  

0 4 

(4.19) 

For case I the relations (4.18) define an irreducible representation of so(3, 1) on 
the subspace with basis 

V3:  { y 7, %', m, N E N}. 

The soi3) content of this representation consists of the infinite-dimensional irreducible 
representations with highest weights -5, -y, - 5 , .  . . . 

For cases I1 and 111 equations (4.18) subduce on the invariant subspace V; the 
same so(3, 1) representation as for case I. In cases I1 and 111, however, the representa- 
tion (4.18) also induces a representation on the quotient space with basis 

5 7 9  

Q; = 0 - / V3 : { y r, y 7 ,  y ?, m E h} . 

The representation which is induced by (4.18) on & / V 3  is indecomposable for both 
cases I1 and 111, though in a different manner for each case. 

(A2) . A I = & ,  A 2  = *:iM, M = 3 , 5 , 7  ) . . . .  
For this case a. = a = aMtl = a M - 2  = 0, while aN becomes singular for N = 
+(M + 1), i ( M  + 3). The equation (4.18) defines on the subspace WM,, with basis 

WM+l: {YL+I+N,N, m e h }  (4.20) 

an indecomposable so(3, 1) representation. The basis for its invariant subspace can 
be chosen as 

(4.21) 

The representation subduces an irreducible so(3, 1) representation on WM+ whose 
so(3) content consists of the so(3) irreducible representations with highest weights 
-&-2, -:M-3,.  . . . On the quotient space W,w+l /W,w+~ equations (4.18) induce 
an irreducible so(3,1) representation with highest weight -$I4 - 1. The subspace 
spanned by 

W M + ~ :  { ~ Z + Z + N ,  N,  m E NI. 

W ,  : {y Y+N, N, m E N) 
transforms invariantly under (4.18); however, i t  contains the singular band. On the 
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quotient space a-/ W1, however, (4.18) induce again an so(3, 1)  representation. A 
basis for this space can be chosen as 

(4.22) 

This space carries an indecomposable so(3, 1) representation which does not decom- 
pose under restriction to so(3). The invariant subspace of this representation is spanned 

IYgM+lim , m e N / )  (4.23) 

and carries an (infinite) dimensional irreducible so(3, 1)  representation with highest 
weight -&I - 1. On the quotient space a finite-dimensional irreducible so(3, 1) 
representation is induced, with dimension M + 1 .  The so(3) content is identical to the 
so(3, 1)  representation (i.e. it does not decompose). We refer to the discussion 
following (4.15). 

a-/ W ,  : { y ; ,  m E N}. 

by 

(A3) AI=$M, 1 i 2  = *;i, n = l , M = 3 , 5 , 7  , . . . .  
In this case again care has to be taken regarding the order in which the value N and 
the limits for A1 and 122 are chosen. C Y ~ = C Y ~ + ~  = O  holds while for aN, N = 
$(M + l), N = ;(M + 3) one obtains 

N = i (M + 1) N =;(M+3) 

f a 2  

a(M + 1)(M + 3 )  i ( M  + 1)(M + 3 )  

0 0 

The vanishing of the coefficients CYN for N = 0, M + 2 defines subspaces which 
remain invariant under the (possibly) singular transformations given by (4.18). The 
property  CY^+^ = 0 defines an invariant subspace for both cases I and I1 for which a 
basis can be chosen as 

In case I equations (4.18) subduce an irreducible so(3, 1)  representation on VM+2 
whose so(3) content consists of the so(3) irreducible representations with highest 
weights -$A4 - 2, -;M - 3, . . . . 

In case 11, equations (4.18) define on 0- an indecomposable so(3, 1)  representation 
which contains VM+2 as invariant subspace as well as an invariant subspace with basis 

V M : (  Y: N = i ( M + l ) , ; ( M + 3 ) , . .  . , m € N ,  (4.25) 

which in turn contains the subspace VM+Z as an invariant subspace. The so(3) content 

M - Z N + r  1 , N =o,  1 , 2 , .  * * . , I ( M -  1 ) ;  f €N+, 
YN,  
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of this representation consists of the indecomposable so(3) representations with highest 
weights kM, ;M - 1,  . . . ,z and the so(3) irreducible representations with highest 
weights -5, -5, - 5 , .  . . . Equations (4.18) induce on the quotient space 

(4.26) R-/VM: { y & N = O ,  1 , 2 , .  . . , s (M-l ) ,  k = O ,  1 , 2 , .  . . , M - 2 N }  

a finite-dimensional irreducible representation of so(3, 1)  whose dimension is given as 

d i m p ( M ) = : ( M + l ) ( M + 3 )  (4.27) 

and its so(3) content consists of the finite-dimensional irreducible so(3) representations 
with highest weights $M, ;M - 1, . . . , 5 .  

It needs to be proven that the basis elements given by (4.25) span an so(3 , l )  
invariant subspace. This can be seen as follows. Consider the following array of six 
basis vectors: 

1 

1 3 5  

1 

1 

1 :,12k+1 r,;2k+2 , y p - 2 k + 3  

M - 2 k + l  M - 2 k + 2  M - 2 k + 3  
y k - 1  

(4.28) 

where k = 0 ,1 ,2 ,  . . . , :(M - l),  n = M - 2k, M, n = 1 , 3 , 5 ,  . . . . It needs to be shown 
that the action of the representation upon any basis element which is to the right of 
(or above) the line cannot lead to elements which are to the left of (or below) the 
line. If this is done then we have found an invariant subspace (see also figures (1)-(3)). 
The action of the so(3) subalgebra is along each line separately (i.e. horizontal) and 
it is easily verified that y p - 2 k + 1  and yp-;2k+3 are p(h+)  extrema1 vectors (i.e. they 
are mapped to zero and not to the left of the line). Moreover, it holds that 

since for these values the factors involving the m vanish in (4.18). The c's and d's  
denote non-vanishing coefficients. Thus, the action of p ( p + )  and p ( p 3 )  upon these 
elements does not map them upon elements to the left of the line. Inspection of 
(4.18) shows that the action of the remaining operators upon elements to the right 
of the line cannot lead to elements which are to the left of the line. Thus the elements 
to the right of the line correspond to an invariant subspace. 

Equations (4.18) induce on the quotient space with basis { y ; ,  y ;"} the indecomposable 
At this point it may be useful to consider an example. We choose A I  = 5, A2 = * g .  1. 

Figure 1. Action of the shift operators of so(3, 1) upon the elements of R- in the angular 
momentum basis as plotted in figures 2 4 .  Note that this action is to be multiplied by 
matrix elements which may become zero. 
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Figure 2. Graphical representation of the indecomposable so(3, 1) representation AI = 3, 
A2 = *i/2 ( m  = 3, n = 1). The arrows indicate the action of the various operators p .  The 
action of p ( h , )  on a basis vector yields a multiple Ai-N - m  of the basis vector, the 
action of p ( p 3 )  on a basis vector yields, with one exception ( y f ) ,  a linear combination of 
two basis vectors, one of which is the original state. In the figure we indicate the shift 
vectors only. The circled points represent pih,j external vectors. On the invariant subspace 
{ y i ' " ,  y:", m EN} one obtains an so(3, 1) irreducible representation with so(3j content 
of two infinite-dimensional irreducible representations with highest weights - and - 2 .  
On the quotient space { y o ,  yh, y i ,  y i ,  y , ,  y ; }  with respect to the invariant subspace one 
obtains a six-dimensional irreducible so(3, 1) representation with its so(3) content consist- 
ing of the two finite-dimensional irreducible representations with highest weights $, ;. 
The so(3, 11 indecomposable representation .Il = 2 ,  ,I2 = i/2 has an so(3) content which 
consists of the two so(3) indecomposable representations with highest weights $ and i .  

I 
- 

3 

. .  . .  . .  
M - 4  J M - 3  y3 
M - 2  J M - 2  y2 
M i M - 7  Y, 
M +  2 $M 

+M ;M-Z 4 M - 4  ... - ; M + 3  -$M+l -3M-1 

Figure 3. Graphical description for case A (.II = i M ,  .Iz= $in, M, n = 1 , 3 ,  5 , .  , . ) .  

The basis vectors are plotted in a rectangular array, with N increasing from bottom to 
top and m increasing from left to right. The dots represent p ( h + )  extrema1 vectors. 
The eigenvalues of p(h31 are given by i M - N - m .  In the shaded area the coefficients 
aN are singular (or undetermined). The coefficient aN = O  (or is undetermined) for 
N = * I n  + f M  + 1 2 0 .  That is, for these values of N the elements y above (and including) 
the horizontal line which represents the y: form an invariant subspace. For given 
N = - f n  + f M  + 1, n S M ,  a quotient space can be formed, a basis of which can be chosen 
as the set of elements represented by the lowest N = - i n  +:M + 1 lines. The representa- 
tion which is induced on this quotient space is indecomposable. All the elements to the 
right of the full line including the line span an invariant subspace. Forming the quotient 
space of the quotient space finite-dimensional irreducible representations are obtained. 
The elements to the left of the full.line span the finite-dimensional space which carries 
the representation. The elements on the full line and to the right of it span the space for 
an infinite-dimensional irreducible representation. In general both signs i i n  need to be 
included in the discussion, as well as all other values for n. Whenever the singular region 
is not contained in an invariant subspace, or else in the quotient space, representations 
of so(3, 1) are obtained. 
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SO(3,l) representation 

(4.30) 

Figure 2 represents this representation in graphical form. The basis vectors to the 
right of the circled points (including those) span an infinite-dimensional invariant 
subspace. Restriction of the representation (4.30) to this subspace yields an infinite- 
dimensional irreducible so(3, 1) representation. Its so(3) content consists of two 
infinite-dimensional irreducible so(3) representations which are bounded above and 
have highest weights -$ and -$ respectively. The representation (4.30) induces on 
the quotient space with basis { y o ,  y ; ,  y &  y i ,  y y ,  y : }  a six-dimensional irreducible 
so(3, 1) representation. Its so(3) content consists of the two spin representations with 
highest weights $ and 1. This representation is obtained from (4.30) by formally setting 

Y C + O ,  m = 4 , 5 , 6  , . . . ,  Y Y - + O ,  m = 2 , 3 , 4 , .  # . .  

In matrix form one then obtains 
3 ' 0 3 0 0 0 0  5 0  0 0 0  0 1; { 8 I i], p ( h + ) = [ '  0 0 4 0 0 0  

p(h3)= 
0 0 0 0 0 0 '  
0 0 0 0 0 1  
0 0 0 0 0 0  

0 0  
0 0  0 0 ;  
0 0  0 0 0 - t  

' 0  0 0 0 0 0  $ i o o o o o  
1 0 0 0 0 0  ti  o 0 8  

0 0 1 0 0 0  

0 0 0 0 1 0  

P V - 1  = 

0 0 0 0 0 0  0 -1 0 %  

' o i  o 0 - y  o ' 0  0 0 0 0 0 '  

o o $ o o  P ( P - )  = 0 0  P ( P + )  = 

1 0 0 0 0 0  
$ 0  0 -6 0 O l O O $ i O ,  
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M - 4  Y 4  
M - 3  Y3 
M - 2  Y2 

M - 1  Y1 
M 

M ,  n = 3 , 5 , 7 , .  . , ; n <M, A - 1‘ (A4) Ai=iM, 2 - 21n, 
In this case aN = 0 for N = 0, M + 2 ,  *in + + 1 while LYN becomes singular for 
N = $(M + l), $(M + 3). The singular band lies in between N = k in  + $M + 1. See 
figure 3. N = in +$M + 1 defines an invariant subspace which contains in turn an 
invariant subspace defined by N = M + 2. The relations (4.18) subduce and induce 
representations on these invariant subspaces and on the quotient space. The value 
N = -in + &I4 + 1 defines another invariant subspace VM, with respect to the transfor- 
mations (4.18) which contains the previous two subspaces as invariant subspaces, as 
well as the singular band. On the quotient space of 0- modulo the invariant subspace 
VMn with basis (the bottom -in + iM + 1 lines of figure 3) 

(4.31) 

the relations (4.18) induce an indecomposable so(3, 1) representation. Its invariant 
subspace is spanned by the set of basis elements 

{YF-2s+r , s = o , 1 , 2  ) . . . )  ;M- ;n , t€N+}  (4.32) 
(the elements to the right of, and above, the full line, including the line). The 
representation which is subduced by (4.18) on this space is infinite dimensional and 
irreducible. Its so(3) content consists of the infinite-dimensional irreducible rep- 
resentations with highest weights -$A4 - 1, -$M - 2, . . . , gn - 1. For the quotient 
space of the representation space (4.31) with respect to its invariant subspace a basis 
can be chosen as 

(4.33) 

(the elements represented by the first N lines to the left of, and below, the full line). 
The representation (4.18) induces on this space a finite-dimensional irreducible 
representation. Its dimension is given by 

1 ~ / v ~ , , : { y , ” , s = 0 , 1 , 2  , . . . ,  j ~ - i n , m ~ ~ } ,  

1 

1 { y , ” , ~  = 0 ,  1, .  . . , ~ M - t n ,  m =0 ,  1 , 2 , .  . . , M - ~ s }  

d imp(M,n)=a (M+n) (M-n  + 2 ) .  (4.34) 

1 
y;N-5 

Y2” 
l y Y - 3  

1 Y P 1  l y , 2 M . ~  U;” 

n:l 
2 
3 

M - 3  
M - 2  
M -1 
M 
M +I 

Figure 4. Graphical description for case B (‘4, = M ,  Az = i n  ; M, n EN). The interpretation 
of this figure is analogous to figure 3 .  Some invariant subspaces are indicated by full 
lines. The areas to the right of and above the lines represent the invariant subspaces. 
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These finite-dimensional representations are easily obtained from (4.18) by formally 
setting to zero all elements of the invariant subspace (4.32). 

Case B: 
A2 = *in, 

The denominator of aN becomes zero for N = M + 1. The denominator of P N  becomes 
zero for N = M,  M -t 1, The numerator of aN becomes zero for N = 0, N = 2M + 2 
and N = *n + M +  1. Again care has to be taken with the limits as these depend 
upon the order in which they are taken. We distinguish three subcases. See figures 1 
and 4. 

(B1) A1 = A2 = 0, i.e. M = n = 0. 

For this case a. = a2 = 0. The values of cy1, Po and PI depend upon the order of the 
limits. We obtain 

a1 P o  P i  

For case I equations (4.18) define an irreducible representation of so(3,l)  on 
the invariant subspace which is defined by a2 = 0. A basis for this subspace can be 
chosen as 

V2: {Y?+N, m, N E  N}. (4.35) 

The so(3) content of the so(3, 1) representation which is obtained on V2 is given by 
the irreducible so(3) representations with highest weights -2, -3, - 4 , .  . . . 

For both cases I1 and I11 V2 also forms an invariant subspace, and thus (4.18) 
subduce on V 2  the same (sub)representation as in case I. For case I1 one obtains in 
addition an irreducible so(3, 1) representation which is induced by (4.18) on the 
quotient space with basis 

(4.36) 

The so(3) content consists of the so(3) indecomposable representation with highest 
weight 0 and so(3) irreducible representations with highest weight - 1. 

For case I11 there exists an additional invariant subspace with basis 

R-/VZ:  {Y?, YT,  m EN}. 

VI : {y ?+N, m, N E N}. (4.37) 
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The subspace VI contains in turn the subspace V2,  equation (4.35), as so(3, 1) invariant 
subspace. The representation (4.18) induces on the quotient space a-/ VZ, equation 
(4.36), an indecomposable representation, which has an invariant subspace whose 
basis can be chosen as 

(4.38) 

On the quotient space and on the invariant subspace then irreducible so(3, 1) rep- 
resentations are induced and subduced. These so(3, 1) representations do not decom- 
pose under restriction to so(3). They have highest weights 0 and -1 respectively. 

{Y  ;", m E W. 

(B2) A 1 = M, A2 = * i l l l ,  M E N +  

For this case aN = 0 for N = 0, 1 , 2 M  + 1 and 2M + 2. The value for Po = *i. The 
coefficients aN,  N = M + 1 and PN, N = M,  M + 1 become singular. The singular band 
lies in between N = 1 and N = 2M + 1. 

The invariant subspace 

V 2 ~ + 2 :  { Y Z ~ M + Z + N ,  my N E NI (4.39) 

carries an infinite-dimensional irreducible so(3, 1 j representation. Its so(3) content 
consists of the so(3) irreducible infinite-dimensional representations with highest 
weights -M - 2, -M - 3, -M - 4, . . . . The invariant subspace 

(4.40) 

carries an so(3, 1) indecomposable representation. On the quotient space with basis 

(4.41 j 

one obtains an so(3, 1) (and so(3)) irreducible representation with highest weight -M. 
The set of elements 

(4.42) 

can be chosen as a basis for the so($ 1) invariant subspace defined by a = 0. Equations 
(4.18) yield singular elements in this space. For the quotient space n- by the invariant 
subspace (4.42) a basis can be chosen as 

{ Y ~ M + I + N ,  m, N E N} 

{YYM, m E NI 

{ y : ,  N E  N', m EN} 

{yo",  m E NI. (4.43) 

The representations which are induced on it are given by (4.15). 

(B3) A1 = M,  A2 = kin, ME N+, l s ; n < M .  

For this case we have the same 'singular band' as in (B2). See figure 4. The 
coefficients aN become zero for N = 0, 2M +2 ,  n + M +  1, -n + M  + 1. The invariant 
subspaces which correspond to the vanishings of these a's have basis 

(4.44) 

(4.45) 

(4.46) 

The last one contains the 'singular band,' while each space contains the preceding 
subspaces as invariant subspaces. The entire space, a-, and the subspace (4.46), 
contain an additional invariant subspace, which in turn contain both subspaces (4.45) 
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and (4.44) as invariant subspaces. Just as in case (A3) the existence of these additional 
subspaces can be proven by considering the property of the array of the six vectors 

2 M - Z N - 1  2 M - 2 N  2 M - 2 N + 1  I Y N + I  Y N + l  Y N + l  

(4.47) I y ; M - 2 N + 1  
Y & M - 2 N - 1  Y&'-2N 

It holds that 
2M - 2 N  -1 2 M - 2 N - 1  Z M - 2 N - 2  2 M - 2 N - 1  2 M - 2 N - 3  

P ( P 3 ) Y N + l  = C l y N + l  f C Z y N t 2  3 P ( P + ) Y N + l  - Y N + 2  3 

(4.48) 

From (4.48) and from an inspection of the action of the other elements of the algebra 
upon the basis vectors, (4.18), it follows that the elements to the right of and above 
the full line form an invariant subspace (see figure 4). The basis elements of these 
additional invariant subspaces consist of the elements to the right of the full line and 
up. Since they contain the 'singular band' we will be interested only in quotient spaces 
which do not contain the singular band. The basis for the quotient spaces of interest 
is given by 

2 M - 2 N  - 2M - 2 N -  1 2 M - 2 N - 2  
P ( P - ) Y N + l  - d l Y N + I  + ~ ~ Y N + z  . 

{y; ,N=O,  1 , 2  , . . . ,  M - n , m e N }  (4.49) 

with invariant subspace 

{Y SM + - 2 N  +' , N =0 ,  1, . . . , M - n ,  t E W }  (4.50) 

and quotient space 

{yE,N=O,1 ,  . . . ,  M - n ; m = O , l ,  . . . ,  2M-2N).  (4.51) 

Equations (4.18) induce on the space equation (4.50) an infinite-dimensional irreduc- 
ible so(3, 1) representation with its so(3) content consisting of the infinite-dimensional 
irreducible so(3) representations with highest weights -A4 - 1, -A4 - 2, . . . , - (n  + 1). 
On the quotient space (4.5 1) finite-dimensional irreducible so(3, 1) representations 
are obtained. Their dimension is 

dimp(M, n) = (M + n  + 1)(M - n  + 1) (4.52) 

and their so(3) content consists of the finite-dimensional irreducible so(3) representa- 
tion with highest weights M, M - 1, . . . , n. 

5. Representations in the fl, angular momentum basis 

In order to obtain the representations p' of so(3, 1) in the R, angular momentum basis 
we choose as basis for R the ordered set 

~ : { Y ( s , n , u , m , t , r ) , s , n , u , m , t , r ~ ~ }  (5.1) 
with Y(s ,n ,u ,m, t , r )=p" ,h=p"h~5h; ,  Y ( O , O , O , O , O , O ) = U .  ThebasisforR+then 
becomes 

a+: { Y ( s ,  n ) ,  s, n EN} with Y ( s , n ) = p : h : .  (5 .2)  
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It is easily observed that the basis X for 52 goes over into the basis Y of R under 
the Lie algebra automorphism 

P 3 + - P 3 9  p + + p - ,  p - + p + .  

The representations p ’  of so(3, 1) on fl and R+ are then obtained from (3.2) and 

(111 ,  1 1 2 ) +  (-’Ail, -A2) ( 5 . 4 ~ )  

(4.18) by the substitution 

and 

p’(h3) = - ~ ( h 3 ) ,  p ’ (h+ )  = p ( h - ) ,  p’(h-1 = P  (h+)j 

P ‘ ( P 3 )  = - - P ( P 3 ) ,  P ’ ( P + )  = P ( P - ) ,  P ’ ( P - )  = p ( p + ) .  
(5.46) 

The representations p ’  contain the representations of so(3, 1) which were discussed 
by Gel’fand et a1 (1963). If one defines 

1 = A 1  +N -1, l I  = - iAz,  1” = i l l  - 1, s = A , + N + n  ( 5 . 5 )  

(s stands here for the m of Gelfand et a1 (1963)) then one obtains the form of the 
representations as given by Gelfand et a1 (1963) up to an irrelevant redefinition of 
basis elements. It should be noted, however, that the first of the relations ( 5 . 5 )  is a 
condition on A I ,  and thus A I  is no longer arbitrarily complex. Moreover, y N  is a 
p’(h- )  extremal vector for n = 0 and n = -2(Al+ N) + 1. Since n 3 0 integer, it follows 
for the existence of two extremal vectors that 2 (A ,+N)SO,  integer. Since N E N ,  
it follows that 2 h l  must be a negative integer and that the so(3) content of the so(3, 1) 
representations can contain only a finite number of indecomposable so(3) representa- 
tions. 

Inspection of the representations p, equations (4.18) (or the representations p ‘ ,  
equations (5.4)) shows that they are in fact valid for all m, N E  Z ( n ,  N E Z). The 
subset of y: ( y k )  for m, N E  N ( n ,  N E N )  spans an invariant subspace, while the 
subspace which is spanned by the elements y; ( y k )  for negative integers is not 
invariant. While here the extension of the representations to values in Z is purely 
formal, it can be shown that this extension actually corresponds to representations of 
the so(3) subgroup modulo the Casimir element (Gruber and Klimyk 1984). 

Having made this formal extension of the representations p (and p ’ )  from N to E 
it follows that now 2A1 may be an arbitrary integer. This implies that the representa- 
tions p (and p ’ )  may now contain an infinite number of indecomposable so(3) rep- 
resentations. 

We will discuss in the following the representations p ’  in order to establish the 
connection to the standard so(3, 1) representation theory as presented by Gelfand er 
a1 (1963) and Naimark (1964). 

If in (4.18) the substitution ( 5 . 4 ~ )  is made and the definitions (5.46) are applied, 
then (4.18) define the representations p ’  on R,. For the extended representation p ’  
the basis can formally be chosen as 

(5.6) V :  {yk, n E E ,  N E  N} 

where V denotes the linear span of the set of basis elements. The subset 

a+: {yk,  n, N E  N} (5.7) 
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then spans an so(3, 1 )  invariant subspace of V, while the subset 

V - R + : { y k , n  E N - , N E N }  (5 .8)  

spans a non-invariant subspace of V. The extended representation p ' ,  however, induces 
on the quotient space V/n+ a representation (which is in general indecomposable) 
for which we can choose as basis the set given by (5.8). The standard so(3,  1 )  
representation theory is then obtained on an invariant subspace of the quotient space 
V/n+ for particular values of the parameters A I ,  A 2 .  

Figure 5 describes graphically the situation for the case of the representation p ' .  
The substitution ( 5 . 4 a )  yields the coefficients a h  and p h  of p ' ,  

ab  = ( Y N  ( - ' i l ,  -&), P k = P N ( - h l ,  -142). (5 .9 )  

For the parameters A I ,  '22  we choose the values 

k - 2 ~ N ,  1 A1 = 10 + 1 = 5 k ,  
(5 .10)  

hz = ill, iA 2 - 2 h  -1 tEN, t = k + 2 s ,  SEN,  

and we set 

1 = 10 + N = A1 + N - 1 ,  s = A , + N + n = l + l + n ,  n EZ.  ( 5 . 1 1 )  

The standard so(3, 1 )  representation theory is represented on the left half of the 
diagram. In the standard analysis the invariant subspace C +F is invisible since, in 
the normalisation chosen, it is mapped into zero. The subspaces A and D cannot be 
seen since the analysis is restricted to the invariant subspace B +E (actually to the 
quotient space of B +E + C + F modulo C + F, which is spanned by the elements of 
B + E ) .  It is only the regions B and E which are considered in the standard analysis. 

The elements of E span an invariant subspace of the space which is spanned by 
the elements of B and E. A basis for this space can be chosen as 

This representation is indecomposable for the values of the parameters given by (5 .10 ) .  
It contains an so(3,  1 )  invariant subspace E with basis 

- 2  -21.2,  + N ' + N ) + I  
E :  { Y N ! + N ,  Y N ' + N , .  . . , Y " + ~  

(B  + E ) / E :  { y i ' ,  y i 2 , .  . . , y i ' h l + N ) + l  , N = 0 ,  1 , .  . . , $ ( l - k ) } .  

, N' = i ( t  - k )  + 1 ,  N E N}, (5 .13)  

(5 .14 )  

The representation p'  induces on the space ( B  + E ) / E  the finite-dimensional irreduc- 
ible so(3, 1) representations of dimension 

dim p ' ( t ,  k )  = $ ( r  + k ) ( t  - k - 1 )  + 2k - 1 .  (5 .15)  

The so(3) content of these representations consists of the finite-dimensional so(3) 
representations 

with k - 2 EN and t = k + 2s. s E N, I ~ = I ~ - l = ~ k - l , l ~ + l , I ~ + 2 , .  , , , z t - 1  1 
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On the space E the representations p ’  induce infinite-dimensional irreducible 
representations (the ‘tail’ of Gelfand et a1 (1963)) whose so(3) content consists of the 
finite-dimensional irreducible so(3) representations 

1 
I: t ,  : t + 1 ,  : t + 2 ,  < * * .  

The matrix elements for these representations are easily obtained from the extended 
representation p’  by limiting the representation p ’  to the respective basis and by setting 
equal to zero all basis elements which result from the action of p ’  but which do not 
belong to the basis. These are elements which belong to the invariant subspaces and 
thus can be set equal to zero. 

In addition to the familiar representations of so(3, 1) figure 5 depicts other so(3, 1) 
representations, indecomposable as well as irreducible ones. For example, the quotient 
space which is represented by the regions A ,  B and C carries an indecomposable 
so(3, 1) representation. This representation has, in turn, two invariant subspaces, 
namely B + C and C. Restriction to these subspaces yields new representations. Still 
other representations are obtained on the quotient spaces A / B  + C, A + B/C, etc. 

Figures 3 and 4 can be extended in a similar way to represent the extension of 
the representations p to negative integers. 

N 
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